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Absence of the Thorpe–Ingold effect by gem-diphenyl
groups in ring-closing enyne metathesis
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Abstract—In tandem ring-closing metathesis of alkynyl silaketals containing two different tethered olefins, the gem-dimethyl group
showed the expected Thorpe–Ingold effect, thereby giving good level of group selectivity. Unexpectedly, however, the corresponding
gem-diphenyl group did not show any Thorpe–Ingold effect for the ring-closure reaction.
� 2007 Elsevier Ltd. All rights reserved.
The Thorpe–Ingold effect is a well-appreciated parame-
ter that profoundly affects ring-closure rates and effi-
ciency.1,2 In our approach to develop group-selective
enyne ring-closing metathesis (RCM) methods,3,4 we
envisioned that the ring-closure rate difference of two
equilibrating alkylidene intermediates can be tuned by
the Thorpe–Ingold effect to provide a product with
selectivity among several possible ones.4 To examine this
concept, we turned our attention to dialkenylsilaketal 1
as an appropriate substrate platform (Scheme 1).5,6

Should the Thorpe–Ingold effect play a significant role
during RCM of 1, the initial ring closure of 2a contain-
ing the gem-dialkyl substituents should occur faster than
that of 2b ðk1 > k2Þ. Given that the pre-ring-closure
steps are reversible and occur at higher rates than that
of the first ring-closure event ðkex � k1 or k2Þ, irrespec-
tive of the selectivity in the initiation event to generate
alkylidene species 2a or 2b, the tandem RCM of a dien-
yne5 such as 1 is expected to yield preferentially 4a via 3a
over 4b via 3b. Although the rate difference ðk3 vs k4Þ in
the second ring-closure step (conversion of 3 to 4) could
affect the overall selectivity, we surmised that the first
ring closure would be the primary selectivity-determin-
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ing step because the process between 2 and 3 is virtually
irreversible. Here we report a very unexpected absence
of the Thorpe–Ingold effect by gem-diphenyl groups
while the corresponding gem-dimethyl group manifested
this effect to give group selectivity in RCM reactions in
concentration-dependent manners.

The current study was triggered by the unusual selectiv-
ity for the RCM of 6a with Grubbs carbene complex 5,7

generating 8a exclusively while 9a provided a mixture of
10a and 11a in a 1:1.5 ratio (Scheme 2).8 Considering the
faster ring closure to form smaller rings first,9 7a
and 10a should have been the major products from 6a
and 9a. The deviation of the observed selectivity for
RCM of substrate 6a might be justified by the steric hin-
drance of the gem-diphenyl group near the alkene, pro-
hibiting the initiation from that alkene moiety. This
hypothesis, indeed, was supported by the observed selec-
tivity change along with a change from the gem-diphenyl
in 6a to the gem-dimethyl group in 6b, where probably
the reduced steric hindrance of the gem-dimethyl group
increased the formation of 7b to give the observed prod-
uct ratio of 1:4 at 0.003 M. Increase in concentration
further decreased the ratio of 7b:8b as expected. To
negate any ambiguous assignment of the RCM products
due to the potential difficulty in differentiating the two
very similar structures, first, a homonuclear decoupling
experiment was conducted on the fully protodesilylated
product derived from 8a (Scheme 3).5 Upon irradiation
of the vinyl proton with triplet splitting, loss of the
doublet splitting pattern for the methylene protons
was observed, which implicates structure 8a 0, where
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the methylene protons adjacent to the tertiary hydroxyl
group can couple only to the adjacent vinyl proton.10

The 1:1.5 selectivity between 10a and 11a in the RCM of
9a deviates from the prediction that favors the forma-
tion of 10a over 11a, but does not seem to have a steric
origin as in the case of 6a and 6b. In this example, it is
likely that the Thorpe–Ingold effect is operating such
that the initial ring closure of the alkene tether contain-
ing the gem-dimethyl group (following path 1–2a–3a–4a,
Scheme 1) to form the seven-membered ring is more
favored over the six-membered ring (following path
1–2b–3b–4b). On the basis of the hypothesis that the
two competing alkylidene species formed from the two
different tethered alkenes will likely undergo faster
exchange reaction at higher concentration, the selectivity
between the two products will depend solely on the ring-
closure rate difference between the alkylidenes regardless
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of the initiation event.11 Indeed, the selectivity between
10a and 11a was increased significantly with the increase
in reaction concentration. On the other hand, the diphe-
nyl counterpart 9b showed competitive formation of the
two possible bicycles 10b and 11b in a 1:1 ratio at all
concentrations examined. The mechanistic hypothesis
based on the Thorpe–Ingold effect shown in Scheme 1
nicely explains the RCM selectivity trend of 9a; the
ring-closure rate of the longer alkene with gem-dimethyl
substituents outruns that of the shorter, which is re-
vealed only when the alkylidene exchange rate ðkexÞ be-
comes higher than that of the first ring closure
ðk1 and k2Þ at higher concentrations.11 However, the
unexpected 1:1 ratio of the two products from RCM
of 10b and 11b from 9b even under neat conditions is
perplexing, as it suggests that gem-diphenyl substituents
in this case do not have the expected capacity to induce
the Thorpe–Ingold effect.12

Given the contradicting Thorpe–Ingold effect induced
by the gem-dimethyl and gem-diphenyl substituents,
we further examined silaketals 12a and 12b that contain
gem-dialkyl substituents on the longer alkene tether and
a monoalkyl substituent on the shorter alkene tether
(Scheme 4). However, the RCM selectivity profile of
these substrates is very similar to that of 9a and 9b,
implicating that the monoalkyl substitution does not
significantly affect the initial ring-closure event.

In summary, we have observed a highly unusual discrep-
ancy between the gem-dimethyl group and the gem-
diphenyl group in their capacity to manifest the
Thorpe–Ingold effect. The gem-dimethyl substituent
played an evident role to promote ring closure at higher
concentrations, selectively generating one of the unsym-
metrical bicyclic silaketals. Very unexpectedly, however,
the corresponding substrates with gem-diphenyl groups
under identical reaction conditions did not show any
observable Thorpe–Ingold effect. Further exploration
of this discrepancy is in progress.
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